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Introduction
In ancient Greek civilization, cancer treatments were based in the used of medicines such 

as extracts from chickpea, adderwort, stinging nettle, and other plants [1]. Surgical approaches 
accompanied by blood-letting have been described as early as the first century A.D., [1]. The first 
revolution in cancer therapy occurred in the middle of the 20th century when a correlation between 
mustard gas exposure and depletion of lymphocytes in the blood of soldiers during World War II 
was observed [2-4]. This prompted the hypothesis that nitrogen mustard compounds could be used 
to inhibit the growth of cancerous white blood cells in leukaemia and lymphomas. At the same time, 
a study reported the potential of folic to acid accelerate the growth of leukaemia cells. Subsequently, 
clinical trials involving methotrexate, a folate antagonist, to treat leukaemia were implemented 
[2,5]. In 1903, radiation therapy, initially applied as palliative care, was found to improve patients’ 
survival [6]. Since then, treatments based on either radiation therapy, or chemotherapy became 
classical approaches against cancer. However, both of these traditional methods are crude as they 
kill many normal cells, leading to side effects and can ultimately result in more aggressive cancers. 

Consequently, this led us to the development of targeted therapies that are designed to fight cancer 
cells with more precision and potentially fewer side effects. These therapies specifically interfere 
with signalling pathways involved in cancer progression. Indeed, more detailed understanding of 
tumour biology revealed that each individual tumour accumulates loads of genomic and epigenetic 
alterations during cancer evolution. These alterations are translated by molecules that can be further 
targeted by a growing arsenal of drugs. 

The present review aims at giving a comprehensive view of the current advances in anti-cancer 
targeted therapies. We will discuss their clinical potential and explore how cancer genetics and 
epigenetics contribute to cancer progression and influence tumour response to targeted therapies. 
Importantly, we will discuss the role of clonal diversity in the development of drug resistance. 
Eventually we will expose how our understanding of the inherent Darwinian character of cancer 
cells gives rise to a next generation of evolutionary cancer therapies.

Approved Cancer Targeted Therapies
Hallmarks of cancer initially comprise sustaining proliferative signalling, evading growth 

suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and 
activating invasion and metastasis [7]. Conceptual progress in the field added two additional cancer 
hallmarks, reprogramming of energy metabolism and evading immune destruction [7]. In addition 
to cancer cells, tumours exhibit another dimension of complexity as they contain a repertoire of 
recruited normal cells to creating a real tumour microenvironment [7]. Targeted therapies are drugs 
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Abstract

In ancient medical handbooks, Hippocrates and Galen declared cancer as an incurable disease. Since 
Greek antiquity this two minds have shaped the current practice of medicine and their grim statement about 
cancer therapy remains a major challenge for our species in the 21 century. Our increasing understanding of 
cancer biology has led to the development of molecularly targeted anticancer drugs. The promising outcomes 
of targeted therapies and the incremental improvements in patients’ survival have given hope for a complete 
cancer remission. Unfortunately, targeted therapies are currently facing the presence of tumour resistance, often 
resulting from compensatory signalling pathways, or from the development of acquired resistance in cancer 
cells via clonal evolution under the selective pressures of treatment. Exploring the role of tumour heterogeneity 
in the development of drug resistance lead to a new perception of cancer as a complex, dynamic and adaptive 
ecosystem underpinned by genetic diversity and epigenetic plasticity. Despite this negative aspect, inherent 
Darwinian character of cancer cells alternatively paves the way towards novel opportunities for the development 
of revolutionary cancer therapies.
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design to interfere with specific molecules underlying different cancer 
hallmarks (Figure 1). Currently, targeted therapies arsenal goes from 
small relatively simple molecules, such as tyrosine kinase inhibitors 
(TKIs) or interfering RNA molecules, to highly complex engineer 
weapons, such as monoclonal antibodies (mAbs), CAR T cells and 
vaccines.

TKIs as targeted therapies

Tyrosine kinases catalyse the transfer of a phosphate from ATP to 
tyrosine residues of a tyrosine-kinase receptor, leading to an activation 
cascade of molecules involved in cell growth, proliferation, migration 
and angiogenesis. Inappropriate kinase activity is an important 
pathway through which cells become cancerous. Small molecule 
inhibitors (SMIs) can competitively bind to the ATP binding site of 
a tyrosine kinase, preventing a deregulated activation of downstream 
signalling during cancer progression (Figure 1). Tyrosine kinase 
receptors such as EGFR, HER2/neu and VEGF are classic targets for 
TKIs. 

The early 2000s saw the success of SMIs with 41 US Food and 
Drug Administration (FDA)-approved SMIs (Table 1). Imatinib 
was one of the first to receive the approval for chronic myelogenous 
leukaemia (CML) [8]. This SMI inhibits a constitutive active tyrosine 
kinase that results from the aberrant fusion of BCR and ABL genes 
and is at the origin of the development of different leukaemia. 
Because this fusion occurs in nearly all CML cases, imatinib therapy 
resulted in a complete hematologic response in 98% of patients [9,10]. 
Subsequently, CML patients who developed a resistance to imatinib 
were given dasatinib, another SMI with a boarder range of tyrosine 
kinase targets [11,12]. 

Interfering RNA molecules as targeted therapies

Small interfering RNAs (siRNAs), as potent tools for target-
specific gene silencing through RNAi, were first observed in 1998 by 
Craig Mello [13]. Since then, three siRNAs used as cancer targeted 
therapies received an FDA approval to initiate phase I clinical trials 
[14]. ALN-VSP comprises two siRNAs that simultaneously target 
VEGF and KSP genes [15]. CALAA-01 is a tumour inhibitor that 
targets a protein involved in DNA replication and cell division in 
several cancers [16-18]. Finally, the Atu027 compound displays 
RNAi-mediated suppression of protein kinase N3 (PKN3) gene 

expression in vascular endothelial cells. The PKN3 target gene is a 
critical factor for cancer progression and metastasis [19] (Figure 1). 

In spite of the tremendous potential of RNA-based therapies, 
there are challenges to bear in mind. RNAs are inherently unstable, 
and therefore difficult to deliver in high enough amounts to the 
target tissue due to clearance by the renal system and degradation by 
nucleases in the blood stream [20,21]. In addition, toxicity due to off-
target effects and activation of the immune system are also pressing 
concerns [20,22].

Monoclonal antibodies as targeted therapies

Monoclonal antibodies (mAbs) are immunoglobulin structures 
designed to target specific antigens found on the surface of cancer 
cell but also host cells. Targeted antigens include proteins associated 
with growth and differentiation, inhibitory molecules (immune 
checkpoints) or adhesion factors. Their anti-tumour efficacy relies 
on three main mechanisms. The first one directly induces tumour 
cell death by inhibiting tumour cell survival signalling and inducing 
apoptosis. The second aims at disrupting stromal interactions or 
vascularisation, thus depriving tumours of stable networks and 
blood nutrients (e.g. anti-VEGF, anti-VEGFR). The third uses anti-
tumour immunity to kill cancer cells (Figure 1). For instance, mAbs 
can target inhibitory molecules involved in host T cell dysfunction to 
reactivate their anti-tumour activity (e.g. anti-PD-1, anti-PD-L1, anti-
CTLA4...). These checkpoint-inhibiting antibodies were a revolution 
in the field of targeted therapies with anti-PD1 antibody currently 
approved for the treatment of 7 different malignancies (Table 2). 
Moreover, anti-PD1 and anti-CTLA-4 are being systematically 
applied in clinical trials of particular cancer types [23-25]. To date 
more than 30 mAbs are FDA-approved in the treatment of several 
cancers and are summarised in Table 2. Importantly, these immune-
modulating therapies are used either alone or in combination with 
each other to potentiate their efficacy [26,27]. 

However, such combinations also tend to come with more 
severe side effects [28]. As a consequence, and to reduce the cost of 
the treatment, bispecific antibodies (bsAb) have recently emerged 
as potent substitutes to combined anti-cancer therapies. bsAb are 
genetically engineered antibodies that associate the specificities of 
two or more antibodies to simultaneously target different antigens. 
The idea of bsAb emerged in the late 1980s, when Bevan et al. 
suggested for the first time the use of hybrid antibodies to redirect 
T cell to attack and kill tumour cells (Figure 1) [29]. Bispecific T-cell 
Engagers (BiTEs) are bsAbs obtained by the fusion of single-chain 
variable fragments (scFvs) targeting a tumour-associated antigen and 
the CD3 subunit of T cell receptor (TCR) [30]. Such construction 
creates a link between antigen-positive tumour cells and CD3+ T cells 
in order to force T cells to proliferate and exert their anti-tumour 
activity. Blinatumomab, was the first BiTE FDA-approved in 2014 
for the treatment of acute lymphoblastic leukaemia (ALL) [30]. In a 
phase III trial conducted in patients with relapsed/refractory B-cell 
precursor ALL, 44% of blinatumomab-treated patients responded to 
the treatment. The median overall survival was 7.7 months compared 
to 4.0 months in standard-of-care chemotherapy group [31]. 

CAR T cells and their next generation

Therapeutic T cell engineering has recently garnered widespread 
interest in the field of targeted therapies because of the success of 

Figure 1: Targeted therapies drugs designed to interfere with specific 
cancer hallmarks.
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Table 1: Small molecules inhibitors approved by the FDA for the treatment of cancer.

Inhibitors Target(s) FDA-approved indication(s)

Afatinib (Gilotrif) EGFR (HER1/ RBB1), HER2 (ERBB2/
neu)

Non-small cell lung cancer (with EGFR exon 19 deletions or exon 21 substitution 
(L858R) mutations

Alectinib (Alecensa) ALK Non-small cell lung cancer (with ALK fusion)

Axitinib (Inlyta) KIT, PDGFRβ, VEGFR1/2/3 Renal cell carcinoma

Bortezomib (Velcade) Proteasome •	 Multiple myeloma
•	 Mantle cell lymphoma

Bosutinib (Bosulif) ABL Chronic myelogenous leukemia (Philadelphia chromosome positive)

Brigatinib (Alunbrig) ALK Non-small cell lung cancer (ALK+)
Cabozantinib (Cabometyx [tablet], 

Cometriq [capsule]) FLT3, KIT, MET, RET, VEGFR2 •	 Medullary thyroid cancer
•	 Renal cell carcinoma

Carfilzomib (Kyprolis) Proteasome Multiple myeloma

Ceritinib (Zykadia) ALK Non-small cell lung cancer (with ALK fusion)

Cobimetinib (Cotellic) MEK Melanoma (with BRAF V600E or V600K mutation)

Crizotinib (Xalkori) ALK, MET, ROS1 Non-small cell lung cancer (with ALK fusion or ROS1 gene alteration)

Dabrafenib (Tafinlar) BRAF •	 Melanoma (with BRAF V600 mutation)
•	 Non-small cell lung cancer (with BRAF V600E mutation)

Dasatinib (Sprycel) ABL •	 Chronic myelogenous leukemia (Philadelphia chromosome positive)
•	 Acute lymphoblastic leukemia (Philadelphia chromosome positive)

Enasidenib (Idhifa) IDH2 Acute myeloid leukemia (with IDH2 mutation)

Erlotinib (Tarceva) EGFR (HER1/ERBB1)
•	 Non-small cell lung cancer (with EGFR exon 19 deletions or exon 21 

substitution (L858R) mutation)
•	 Pancreatic cancer

Gefitinib (Iressa) EGFR (HER1/ERBB1) Non-small cell lung cancer (with EGFR exon 19 deletions or exon 21 substitution 
(L858R) mutation)

Ibrutinib (Imbruvica) BTK
•	 Mantle cell lymphoma
•	 Chronic lymphocytic leukemia
•	 Waldenstrom's macroglobulinemia

Idelalisib (Zydelig) PI3Kδ
•	 Chronic lymphocytic leukemia
•	 Follicular B-cell non-Hodgkin lymphoma
•	 Small lymphocytic lymphoma

Imatinib (Gleevec) KIT, PDGFR, ABL

•	 GI stromal tumor (KIT+)
•	 Dermatofibrosarcoma protuberans
•	 Multiple hematologic malignancies including Philadelphia chromosome-

positive ALL and CML
Ixazomib (Ninlaro) Proteasome Multiple Myeloma

Lapatinib (Tykerb) HER2 (ERBB2/neu), EGFR (HER1/
ERBB1) Breast cancer (HER2+)

Lenvatinib (Lenvima) VEGFR2 •	 Renal cell carcinoma
•	 Thyroid cancer

Neratinib (Nerlynx) HER2 (ERBB2/neu) Breast cancer (HER2 overexpressed/amplified)

Nilotinib (Tasigna) ABL Chronic myelogenous leukemia (Philadelphia chromosome positive)

Niraparib (Zejula) PARP
•	 Ovarian cancer
•	 Fallopian tube cancer
•	 Peritoneal cancer​

Olaparib (Lynparza) PARP Ovarian cancer (with BRCA mutation)

Osimertinib (Tagrisso) EGFR Non-small cell lung cancer (with EGFR T790M mutation)

Palbociclib (Ibrance) CDK4, CDK6 Breast cancer (HR+, HER2-)

Pazopanib (Votrient) VEGFR, PDGFR, KIT Renal cell carcinoma

Ponatinib (Iclusig) ABL, FGFR1-3, FLT3, VEGFR2 •	 Chronic myelogenous leukaemia
•	 Acute lymphoblastic leukaemia (Philadelphia chromosome positive)

Regorafenib (Stivarga) KIT, PDGFRβ, RAF, RET, VEGFR1/2/3
•	 Colorectal cancer
•	 Gastrointestinal stromal tumours
•	 Hepatocellular carcinoma

Ribociclib (Kisqali) CDK4, CDK6 Breast cancer (HR+, HER2-)

Rucaparib (Rubraca) PARP Ovarian cancer (with BRCA mutation)

Ruxolitinib (Jakafi) JAK1/2 Myelofibrosis
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CD19 chimeric antigen receptor (CAR) therapy [32]. CARs are 
synthetic cell receptors for antigen that are genetically introduced 
into T cells to increase their avidity and reproducibility [33]. 
CARs integrate a single chain variable fragment (scFv) of a specific 
antibody and a signaling domain CD3ζ to generate T cells that will 
attack cancer cells under the guidance of the CAR specificity [33,34] 
(Figure 1). CARs targeting CD19, a cell surface molecule found in 
most leukaemia and lymphomas, have yielded high remission rates in 
patients with chemo-refractory and relapsed disease, including ALL, 
CML, and non-Hodgkin lymphoma [32]. 

However, when CAR-T cells successfully drive tumour regression, 
a major drawback lies in severe adverse effects mainly caused by a 
cytokine release syndrome (CRS) related to excessive activation 
of these cells [32-34]. Another weakness is the short persistence of 
conventional CAR-T cells. Due to strong and lasting TCR/CAR cell 
surface expression, CAR-T cells are constantly sollicitated, which 
drives their exhaustion and terminal differentiation more rapidly 
[35]. To further enhance the efficacy and safety of CAR-T cells, some 
strategies were reported such as inclusion of suicide gene or new 
engineering modalities that target nucleases like CRISPR [32,36]. In 
this last context, CRISPR/Cas9 method is used to decrease the level 
of endogenous TCR by targeting CARs to the T-Cell Receptor Alpha 
Constant (TRAC) locus, while CAR is expressed under the promoter 
of an endogenous gene to enhance its stability and reproducibility 
[35]. In contrast to conventional CAR-T cell, such construction was 
reported to generate a bulk of long-term memory effector CAR-T 
cells. Furthermore, TRAC-CAR T cells express lower levels of 
inhibitory receptors (like PD-1, TIM-3 and LAG3), which prevent the 
triggering of early T cell exhaustion, and allow long-lasting control 
of murine hematopoietic tumour cells [35]. Whether TRAC-CART 
cells are clinically efficient over conventional CAR T cell therapy and 
reduce CRS side effect deserve further investigations.

Anticancer vaccines

Cancer vaccine can be either therapeutic or prophylactic. 
Therapeutic cancer vaccines usually utilise tumour-associated 
antigens to stimulate specific T cells and drive cancer cell killing [37] 
(Figure 1). Sipuleucel-T was the first cancer vaccine to be approved by 
the FDA and the European Medicines Agency (EMA) as autologous 
cellular immunotherapy for the treatment of asymptomatic or 
minimally symptomatic, metastatic castrate-resistant prostate cancer 
[38]. Sipuleucel-T is thought to work through APCs to stimulate 
T-cell immune response targeted against prostatic acid phosphatase, 
an antigen that is highly expressed in most prostate cancer cells 
[39]. In castration-resistant prostate cancer, sipuleucel-T improved 
survival by 4 months [40].

Another type of cancer vaccine targets oncoviruses. During 
infection, some viruses insert their own DNA into host cells genome 
leading to malignant transformation of infected cells [41,42]. Cancer 
preventive vaccines mostly target cancer-causing viruses like human 
papilloma virus (HPV) or hepatitis B virus (HBV) and protect the 
host by stimulating the secretion of specific antibodies. HPV-vaccine 
Gardasil and several HBV-vaccines are two kinds of FDA-approved 
cancer preventive vaccines.

The Actual Place of Targeted Therapies on the 
Battlefield: The Good and Bad News

Until recently, chemotherapy or chemo-radiotherapy was often 
given as first-line treatment for advanced cancers. The emergence 
of targeted therapies was a real revolution since long-term complete 
tumour responses have been observed in different types of cancer, 
thus over performing the anti-tumour efficacy of standard of care 
usually given to patients [43,44]. These exciting results are shifting 
treatment goals in a proportion of patients with metastatic malignancy 
since higher responses rate and prolonged progression-free survival 
have become conceivable [43-45]. And some patients even undergo 
complete remission after targeted-therapy [46-49]. Consequently, the 
recommended guidelines for which drugs to use in which sequence 
dramatically changed. In metastatic melanoma and non-small cell 
lung cancer, anti-PD-1 agents (alone or in association with CTLA-4 
blocking antibodies) and TKIs, like selective BRAF/MEK inhibitors, 
are now given in first-line treatment whereas chemotherapy takes 
the second place or is considered as a bridging treatment option. For 
CML, TKIs became the first choice with 85-95% of overall survival 
after 5 years. As for bevacizumab, an anti-VEGF antibody, it is largely 
administrated in combination with chemotherapy in colorectal 
cancer.

Despite important progresses, a large proportion of patients, 
depending on cancer types, still remain resistant to these targeted 
therapies and very few have shown complete remission. Furthermore, 
among patients who initially respond, a significant proportion 
undergo tumour relapse during the treatment, requiring patients to 
switch to one therapy to another with the hope to achieve cancer cell 
eradication [50]. But even in case of complete remission and despite 
regular follow-up, cancer recurrence can occur years after the end of 
the treatment [51,52], suggesting that undetectable residual tumour 
cells were unable to be eliminated and spread to other parts of the 
body. Avoiding the relapse by administration of preventive targeted-
therapy may not be efficient, as illustrated by a study conducted in 
early-stage renal cell carcinoma (RCC) at high risk of recurrence [53]. 
Indeed, no difference of disease-free survival was observed between 
patients with resected local disease on anti-angiogenic drugs and 

Sonidegib (Odomzo) Smoothened Basal cell carcinoma

Sorafenib (Nexavar) VEGFR, PDGFR, KIT, RAF
•	 Hepatocellular carcinoma
•	 Renal cell carcinoma
•	 Thyroid carcinoma

Tofacitinib (Xeljanz) JAK3 Rheumatoid arthritis

Trametinib (Mekinist) MEK •	 Melanoma (with BRAF V600 mutation)
•	 Non-small cell lung cancer (with BRAF V600E mutation)

Vandetanib (Caprelsa) EGFR (HER1/ERBB1), RET, VEGFR2 Medullary thyroid cancer

Vemurafenib (Zelboraf) BRAF Melanoma (with BRAF V600 mutation)

Vismodegib (Erivedge) PTCH, Smoothened Basal cell carcinoma
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Table 2: Monoclonal antibodies approved by the FDA for the treatment of cancer.

Agent ANTICORPS Target(s) FDA-approved indication(s)

Alemtuzumab (Campath) CD52 B-cell chronic lymphocytic leukemia

Atezolizumab (Tecentriq) PD-L1 •	 Urothelial carcinoma
•	 Non-small cell lung cancer

Avelumab (Bavencio) PD-L1 Merkel cell carcinoma

Belimumab (Benlysta) BAFF Lupus erythematosus

Bevacizumab (Avastin) VEGF ligand

•	 Cervical cancer
•	 Colorectal cancer
•	 Fallopian tube cancer
•	 Glioblastoma
•	 Non-small cell lung cancer
•	 Ovarian cancer
•	 Peritoneal cancer
•	 Renal cell carcinoma

Blinatumomab (Blincyto) CD19/CD3 Acute lymphoblastic leukemia (precursor B-cell)

Brentuximab vedotin (Adcetris) CD30 •	 Hodgkin lymphoma
•	 Anaplastic large cell lymphoma

Canakinumab (Ilaris) IL-1β •	 Juvenile idiopathic arthritis
•	 Cryopyrin-associated periodic syndromes

Cetuximab (Erbitux) EGFR (HER1/ERBB1) •	 Colorectal cancer (KRAS wild type)
•	 Squamous cell cancer of the head and neck

Daratumumab (Darzalex) CD38 Multiple myeloma

Denosumab (Xgeva) RANKL Giant cell tumor of the bone

Dinutuximab (Unituxin) B4GALNT1 (GD2) Pediatric neuroblastoma

Durvalumab (Imfinzi) PD-L1 Urothelial carcinoma

Elotuzumab (Empliciti) SLAMF7 (CS1/CD319/CRACC) Multiple myeloma

Ibritumomab tiuxetan (Zevalin) CD20 Non-Hodgkin's lymphoma

Ipilimumab (Yervoy) CTLA-4 Melanoma

Necitumumab (Portrazza) EGFR (HER1/ERBB1) Squamous non-small cell lung cancer

Nivolumab (Opdivo) PD-1

•	 Colorectal cancer (dMMR and MSI-H)
•	 Head and neck squamous cell carcinoma
•	 Hodgkin lymphoma
•	 Melanoma
•	 Non-small cell lung cancer
•	 Renal cell carcinoma
•	 Urothelial carcinoma

Obinutuzumab (Gazyva) CD20 •	 Chronic lymphocytic leukemia
•	 Follicular lymphoma

Ofatumumab (Arzerra, HuMax-CD20) CD20 Chronic lymphocytic leukemia

Olaratumab (Lartruvo) PDGFRα Soft tissue sarcoma

Panitumumab (Vectibix) EGFR (HER1/ERBB1) Colorectal cancer (KRAS wild type) 

Pembrolizumab (Keytruda) PD-1

•	 Classical Hodgkin lymphoma
•	 Melanoma
•	 Non-small cell lung cancer (PD-L1+)
•	 Head and neck squamous cell carcinoma
•	 Solid tumors (MSI-H)

Pertuzumab (Perjeta) HER2 (ERBB2/neu) Breast cancer (HER2+)

Ramucirumab (Cyramza) VEGFR2

•	 Colorectal cancer
•	 Gastric cancer or Gastroesophageal junction (GEJ) 
adenocarcinoma
•	 Non-small cell lung cancer

Rituximab (Rituxan, Mabthera) CD20

•	 Non-Hodgkin’s lymphoma
•	 Chronic lymphocytic leukemia
•	 Rheumatoid arthritis
•	 Granulomatosis with polyangiitis

Rituximab/hyaluronidase human (Rituxan 
Hycela) CD20

•	 Chronic lymphocytic leukemia
•	 Diffuse large B-cell lymphoma
•	 Follicular lymphoma

Siltuximab (Sylvant) IL-6 Multicentric Castleman's disease
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those that received placebo [50]. A possible explanation might rely 
on the poor vascularization of early-stage tumour site hinders the 
access of systemic cancer therapy in the tumour microenvironment. 
In addition, to the difficulty of destroying cancer cells, the toxicities 
of targeted-therapy include various symptoms like cutaneous and 
gastrointestinal toxicity, B cell aplasia, CRS or neurotoxicity [54-56]. 
Although reversible in most instances, these toxicities require specific 
medical interventions [32]. 

Overall, all these targeted strategies and their outcomes risen 
two important points. First, using one drug to target one pathway 
is not enough to win the war against cancer. Second, tumours have 
the capacity to evolve and adapt in response to external attacks. This 
raises the following questions: is it possible to adapt cancer targeted-
therapy according to tumours evolution and how? Could we identify 
specific biomarkers to predict what patients are likely to benefit 
from target-therapy while reducing immune-related adverse events? 
Further understanding of the genetic and epigenetic alterations that 
take place in cancer cells and causes treatment failure may be a first 
step toward the development of better-adapted therapeutic strategies 
throughout the course of the disease.

Genetic Diversity and Epigenetic Plasticity are Key 
Source of Information to Fight Cancer

One reason explaining why it is so difficult to fight against cancer 
is that tumours harbour a striking heterogeneity and this intra-
tumour heterogeneity evolves during the disease course [57-59]. Thus, 
a precious source of information to develop cancer treatments lies in 
our understanding of this heterogeneity, its origins and underlying 
mechanism. Stem cells have a central role in the clonal evolution of 
cancer cells leading to tumour heterogeneity [60-63]. Normal stem 
cells are prime targets for the initiation of malignant transformation 
[64] but downstream progenitors, prior to terminal differentiation, 
can also acquire self-renewal capacity by mutational changes [65] 
or micro-environmental pressures, as in zones of hypoxia [66] or 
with metastatic spread and epithelial-mesenchymal phenotypic 
transition [67]. As a consequence, cancer stem cell populations are 
genetically diverse in individual patients [68-71] (Figure 2). After 
cancer initiation, multiple sub-clones often co-exist with no clear 
fitness advantage [71-73]. Within tissue microenvironments, cancer 
sub-clones indulge in reciprocal dialogues with each other and with 
stromal, endothelial and immune cells, modulating each other in the 
struggle to maximise fitness [74-76]. This is clearly illustrated by the 
concept of cancer immunoediting in which while protecting the host 
against tumour cell spreading, the immune system indeed shapes 
the tumour by editing its genome and giving birth to novel tumour 
subclones [77,78]. 

Another key source of information for precision therapies 
development comes from a deeper understanding of genetic and 
epigenetic tumour features. Indeed, malignant transformation, 

oncogenesis and tumour growth are governed by mutations and 
epigenetic changes [79,80]. Oncogenes activation (c-MYC, WNT1, 
HER2, KRAS…) and tumour suppressor genes silencing (TP53, 
CD95…) are important factors that can be regulated during these 
processes [81,82]. In addition, epigenetic aberrations or inactivation 
of genes responsible for protecting DNA integrity are able to support 
highly mutable phenotypes [83-86]. For example, hypomethylation 
near guanine quadruplexes increases the rate of DNA breakage and 
activation of homologous recombination may also act as a mutagenic 
factor [87]. 

During carcinogenesis the accumulations of tumour genomic 
alterations influence the response to therapy. For example, in 
colorectal cancer (CRC), tumours are classified according to their 
somatic mutation profiles. A deficiency in DNA mismatch repair 
system is reflected by a microsatellite instable status (MSI), which 
is associated with treatment outcome. Notably, CRC with MSI were 
unexpectedly responsive to immune checkpoint therapy targeting 
PD-1/PD-L1 pathway [88]. This observation is consistent with the 
specific enrichment of mutations in DNA repair gene BRCA2 in 

Tocilizumab (Actemra) IL-6R •	 Rheumatoid arthritis
•	 Juvenile idiopathic arthritis

Tofacitinib (Xeljanz) JAK3 Rheumatoid arthritis

Tositumomab (Bexxar) CD20 Non-Hodgkin's lymphoma

Trastuzumab (Herceptin) HER2 (ERBB2/neu) •	 Breast cancer (HER2+)
•	 Gastric cancer (HER2+)

Figure 2: Clonal evolution model of cancer stem cells in the establishment 
of heterogenous tumors. 

In the illustrated model Cancer Stem Cells (CSCs) could arise through 
mutations acquired in Stem Cells (SCs) or could also originate from 
differentiated or progenitor cells that have regained ‘stemness’, a term used 
to refer to the intrinsic molecular pathways, epigenetic modifications and 
particular transcription factors that regulate and maintain the SC form [148]. 
An ancestral CSC could give rise to one or two separate clonal lineages that 
independently evolve. More precisely, the acquisition of genetic mutations 
could produce complex genetically diverse branches of CSCs that vary in 
dominancy and malignancy. CSCs can divide asymmetrically, giving rise 
to one daughter CSC and one committed progenitor tumour cell, which 
has limited proliferative capacity. This leads to generation of the complete 
catalogue of tumour-comprising cells [148].
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metastatic melanoma responding to anti-PD-1 therapy [89]. By 
contrast, tumours overexpressing genes involved in mesenchymal 
transition, cell adhesion, angiogenesis or wound healing were 
naturally resistant to this treatment [89]. Mutations arising in genes 
like FLT3, DNMT3A or splicing factors predict poor prognosis 
and are associated with chemotherapy resistance in hematopoietic 
malignancies, especially for patients with tumour recurrence 
[90-93]. It was reported that gene silencing through promoter 
hypermethylations in tumour-associated genes can reduce patient’s 
survival by disrupting the response to chemotherapy [94-96].

In his seminal 1976 review, Nowell described cancer clone 
development as mechanism of diversification and selection in the 
context of tissue ecosystem pressures [97-101]. In such context 
cancer therapeutics is one the most potent ecosystem selection 
pressure in cancer [97-101]. Importantly, cancer therapy can drive 
the selection of resistant subclones [97]. This is clearly evident with 
TKI resistance, which can be allocated to somatic mutations in 
the targeted genes able to drive their reactivation and disable TKI 
action [102]. Similarly, when hematopoietic cancers are predated by 
allogenic transferred T cells, genomic deletion of mismatched HLA 
alleles selects for immunological invisibility [103,104]. Interestingly, 
therapeutic escape also relies on epigenetic routes to deregulate the 
expression of the targeted genes or other pathways that will interfere 
with treatment efficacy [105,106].

In accordance to aforementioned mechanisms underlying 
tumours origins and development, molecular strategies need to 
incorporate an evolutionary view of malignant transformation 
modulated by networks of genetic and epigenetic interactions to 
provide effective treatment across cancer subtypes.

Evolutive Tumour Profiling: A Path toward 
Evolutionary Therapies

Following the idea that cancer evolution is fuel by mutations 
to converge towards metastasis and drug resistance phenotypes 
[107,108] we can explore novel evolutionary approaches to therapy. 
For example, in advanced melanoma and lung cancer, high levels of 
somatic mutations are associated with improved clinical outcome 
after immune checkpoint blockade therapy [109,110]. Importantly, 
innate or acquired somatic mutations can alter wild-type proteins 
and create mutated neo-epitopes potentially targetable by T cells 
[111,112]. Eliciting a broad and evolving response to tumours appear 
then as an appealing strategy, opening the way to neo-epitopes-based 
T cell therapies such as adoptive T cell transfer or vaccines [112]. Neo-
epitopes identification for targeted cancer immunotherapy starts with 
exome and RNA sequencing of cancer and matched normal cells to 
detect mutated sequences. Then data are processed in computational 
pipelines for epitope prediction. Finally, selected neo-peptides are 
synthetized and selected for their capacity to be recognised by specific 
T cells [113-115]. To avoid any cross-reactivity of T cell against native 
antigens, targeted neo-epitopes should ideally derive from antigens 
specifically expressed by tumour cells such as WT1, HER2/Neu or the 
telomerase reverse transcriptase subunit (TERT). 

A large fraction of mutations in cancer cells arise from a stochastic 
process and are not shared between patients, making them patients 
specific. In this condition targeting neo-epitopes for would require 
a personalized therapy [116,117]. Fortunately, although mutational 

load in cancer is heterogeneous, not all somatic mutations randomly 
occur. Cancer types are also associated with shared mutation load, 
giving rise to common newly created epitopes referred as “public” 
neo-epitopes [111,118,119]. Indeed, mutations that promote 
oncogenesis can systematically appear across patients [118]. An 
example concerns telomerase antigen, which could particularly be 
an interesting target. Telomerase activity is required to maintain 
cancer cell immortality [120,121] and all mutations described in 
TERT promoter led to its over-activation [122,123]. Hence, due to 
its critical property in oncogenesis, tumour escape by TERT antigen 
loss mechanism is clearly reduced [124]. The sharp rise of telomerase 
expression following TERT promoter mutation in cancer cells could 
eventually reveal previously undetectable epitopes that may thus be 
considered as tumour neoepitopes to target for immunotherapy. 

Currently, combination regimens are key strategies to treat 
advanced-stage disease with the goal to reverse acquired resistance 
[125]. The development of secondary mutations, gene amplifications, 
and late activation of signal-transduction pathways in tumour cells 
are common in the development of acquired resistance [126]. Adding 
a second drug as part of a combination regimen in this setting takes 
the dynamic nature of clonal evolution into consideration, and 
assumes that the tumour consists of clones that remain sensitive to 
the first drug and that addition of the second drug to the therapy 
combination will target clones resistant to the first drug. An example 
of this type of combination therapy involves the association of HER2-
targeting drugs with mTOR inhibitors in HER2-positive advanced-
stage breast cancer [127-129], in which secondary mutations in 
PIK3CA or increased signalling though PI3K have been shown to are 
mechanisms of acquired resistance to HER2 inhibition [130].

Aside from bsAb previously discussed, another interesting 
approach for anticancer combinatorial therapy is the recent 
development of bifunctional molecules, which consists in antibody-
cytokine fusion proteins named “immunocytokines”. The goal of this 
approach is to directly bring the cytokine into the tumour. It has been 
reported that TGFβ signalling confers resistance to anti-PD-1/PD-
L1 therapy limiting the treatment efficacy [89]. The lack of response 
to anti-PD-L1/PD-1 therapy was associated with TGFβ, especially 
for tumours with an immune–excluded phenotype [89,131]. The 
bifunctional protein M7824, combine an anti-PD-L1 antibody 
linked to the extracellular domain of TGFβ receptor 2 TGFβR2 
and acts as a TGFβ Trap. Preclinical studies in mice revealed that 
M7824 reverse the immune–excluded phenotype by fostering T cell 
localization to the tumour bed. Preliminary results from a phase 1 
trial of M7824 indicate that this therapy is well tolerated and 2 phase 
I trials are currently ongoing in patients with advanced solid tumours 
(NCT02517398, NCT02699515).

In the future, innovative approaches might involve adding 
the second drug when resistance has occurred following an initial 
response to the first drug. To do so, a key question remains to design 
new strategies against cancer: can we predict tumour evolution before 
it happens? Accurately measuring and modelling intra-tumoral 
genetic and epigenetic heterogeneity would help to determine 
biomarkers that indicate if therapy is successful during the course of 
treatment or when a resistance appears. To predict genomic changes 
during treatment, tumour biopsies should ideally be performed 
regularly to monitor for cues to initiate a combination before 
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resistance occurs. However, such invasive process is obviously not 
conceivable. A more realistic approach would be greatly facilitated 
by the analysis of circulating tumour DNA (ctDNA) [132-134]. In 
one study of melanoma, ctDNA was found to be relatively consistent 
and informative as a blood-based biomarker [135]. Levels of ctDNA 
corresponded to response and disease progression. Similarly, a study 
in breast cancer found that ctDNA predicted metastatic relapse for 
patients with early-stage disease and was able to predict they genetic 
events found in the metastatic relapse [136]. Beyond predicting 
relapse, ctDNA may also offer insight into mechanisms of resistance. 
For example, RAS pathway mutations have been detected by ctDNA as 
a mechanism of resistance in colorectal cancer to anti-EGFR therapies 
[137-139]. Measuring epigenetic alterations in ctDNA is also possible. 
Indeed, numerous methylated biomarkers have been established to 
correlate with disease progression [140-144]. Our new understanding 
of cancer as a phenotype influenced by gene expression and 
modulated by epigenetic factors is currently guiding the development 
and selection of targeted therapies. In some cancers, a molecular 
disease classification is routinely performed at the diagnosis to know 
if a specific targeted therapy can be preferentially applied in first-line 
[145-147]. But only few parameters are investigated and more robust 
molecular/genomic analysis is still required to better characterize 
cancer evaluative features and treat patients accordingly.

Conclusion
Our continuous increasing understanding of cancer biology has 

led to the development of molecularly targeted anticancer therapies 
that considerably increased the survival of cancer patients. However, 
the initial euphoria of early breakthroughs exploiting targeted 
treatments was followed by disappointment related to the observation 
of resistance to large numbers of these agents and, later, acquired 
resistance in patients who had an initial response. As a consequence, 
the thinking surrounding the development of anticancer strategies 
is evolving. Cancer is an evolutionary process in which genetics and 
epigenetics intertwined at every step given rise to a striking intra-
clonal genetic and epigenetic diversity. As a consequence, we have 
to master tumour heterogeneity to achieve optimal combinatorial 
deigns of targeted therapies. Precise biomarkers need to be developed 
to monitor precision therapy and subclonal dynamic of tumour 
architecture. Although we still have to face considerable challenges, 
there is much to celebrate in the advancing of cancer treatment. Newer 
technologies to widespread our ability to serially profile genomic, 
transcriptomic, and epigenetic events in cancer cells, are allowing to 
fine-tune therapeutic approaches to improve patient scare.
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