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Introduction
As one of the most aggressive malignant diseases, lung cancer remains a leading course of 

cancer death which have posed a serious threat to people’s lives in western countries [1-3]. As one 
type of lung cancer, cases of the non-small cell lung cancer (NSCLC) account for almost 70% of 
all lung cancer cases [2]. The most common types of NSCLCs include squamous cell carcinoma, 
adenocarcinoma and large cell carcinoma, and each of them can occur at different histologic grades 
including well-differentiated, moderately-differentiated and poorly-differentiated cases [4]. To 
treat patients with NSCLCs at higher histologic grades, chemotherapy and radiotherapy other than 
surgery were often used. However, compared to small cell carcinoma, NSCLCs especially at poorly 
differentiated grades often show relative strong resistance towards chemotherapy [5-6]. Thus, there 
is a clear need to find therapeutic strategies against NSCLC.

To better improve the effect of chemotherapy, many approaches have been used including 
the inhibition of surviving pathways such as EGFR, AKT, WNT pathways and the sensitization of 
apoptosis using small molecues [7-9]. After cell exposure in anti-cancer reagents, most cells undergo 
the process of apoptosis whereas a small portion of tumor cells exhibit considerable tolerance 
towards these drugs and failed to be eliminated. This phenomenon could be explained by the tumor 
heterogeneity and the existence of cancer stem cells (CSCs) [10-11].    

CSCs, also named as tumor-initiating cells, are one kind of cells which posess higher self-
renewal capacity, higher proliferation rate, the increased capacity of tumor invasion, metastasis and 
tumor formation [12]. The existence of the CSC group in cancer cells confers resistance towards 
conventional chemotherapy in patients with NSCLC and lead to poor prognosis and higher 
frequency of tumor reccurence after treatment [13].  In this review we focus on diverse pathways 
involved in cancer stemness in NSCLC which is helpful to the improvement of the CSC theory 
and new advances in clinical therapies against NSCLC. Besides, this review also provided a brief 
description of CSC identification and evaluation methods.

Identificaion of CSC in NSCLC
Sides-Population Cells Represents the Group of CSCs

Although there has been a rapid advance in the field of CSC research in NSCLCs which have 
provided cause for optimism for the apply of more reliable cancer therapies, the identification of 
CSCs in NSCLCs still remains a challenge [14]. A small portion of CSC cells can be enriched in the 
side population cells (SP) after fluorescence activated cell sorting due to ABC transporters such as 
ABCG2 activation in this group of cells which cannot be stained with Hoechst 33342, compared 
with those cells treated with the pump inhibitor verapamil [15]. These SP cells posess higher 
efficiency and capacity of tumor-sphere formation other than the non-SP group using tumor-sphere 
culture methods. The presence of efflux pumps in CSCs has been shown to promote drug resistance 
thereby reducing the efficacy of current therapies. When challenged with chemotherapeutic drugs 
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Abstract

Non-small lung cancer (NSCLC) is one of the most aggressive malignant tumor diseases accounting for a 
large group of all lung cancer cases, and patients with NSCLC have very poor prognosis with short survival time 
and high reccurence rates after therapy. This phenomenon could be illustrated by the existence of cancer stem 
cells (CSCs) which is well supported by a large number of previous studies. Herein we generalize signaling and 
mechanisms (mainly including WNT, notch and hedgehog pathways) involved in cancer stemness in NSCLC 
according to recently-published data with briefly-described CSC identification and evaluation methods. All of 
above will help lead to new advances in therapy against CSCs and improvements in prognosis of NSCLC 
patients.
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in SP cells, this group of cells showed increased resistance to cisplatin, 
gemcitabine and Vinorelbine compared with the non-SP group [16-
18].

Identification of CSC markers

CSCs in solid tumors can be also identified using various CSC 
markers. Among them, CD133 (also named as prominin-1), is one 
of those broad-spectrum stemness markers in various kinds of 
cancer cells including NSCLC which mediates cell differentiation, 
proliferation and apoptosis [19]. Notably, ASCL1 is an identified 
regulator of CD133 which induced the expression of CD133 [20]. 
However, it has been found that the CD133 levels in NSCLC were 
not significantly related to cancer stemness [21]. Thus there is a 
critical need to find more selective CSC markers in NSCLC.  Besides 
CD133, ABCG2 has been widely applied to identificate CSCs in lung 
cancer due to higher tissue specificity than CD133. ABCG2 has been 
found to play a major role in the multidrug resistance phenotype, 
and elevated ABCG2 levels have been found in CSC cells in NSCLC. 
Notably, it has also been found that patients with the dual expression 
of CD133 and ABCG2 have a relative higher risk of tumor recurrence 
[22]. In addition, many other CSC markers in lung carcinoma have 
been also identified in succession. It has been demonstrated that the 
stem cell-like properties has been enriched in the CD44-expressing 
subpopulations of H1299 and H23 NSCLC cell lines [23]. CD166 
expression also suggests a CSC phenotype in NSCLC [24-25]. 
Furthermore, an association of CD166+ tumor initiating cells with 
glycine decarboxylase (GLDC) and the oncogenic stem-cell factor, 
LIN28B has been established, and GLDChi/CD166+ was found to be 
a poor prognostic indicator with a shorter overall survival in NSCLC 
patients [24]. Besides, in Kuang’s study, CD90+ tumor spheres from 
A549 and H446 NSCLC cell lines has a higher self-renewal capacity 
than CD90− cells [25].

As one member of the Aldehyde dehydrogenases (ALDH) group, 
ALDH A1 is a putative stem cell marker and is associated with 
chemical resistance and clinical pathological TNM stages and poor 
prognosis in NSCLC [26-30]. The developed Aldefluor method could 
distinguish stem cells from normal cells and has been used to identify 
potential CSCs in cancer cells including NSCLC [27].

Besides, there are also many other proteins including TMPRSS4, 
Nestin, Lgr5, coxsackie-adenovirus receptor (CAR), et al. which 
could be used as CSC markers in NSCLC [29,32-34].

Cancer Stemness Evaluation by Limiting-Dilution Assay 

As the golden scale to evaluate the tumor stemness, the in-vitro 
or in-vivo limited dilution assay has been widely used to evaluate the 
efficiency of tumor-sphere formation or tumor generation in nude 
mice. Briefly, serial dilutions of tumor cells were cultured using 
serum-free culture methods to compare the rates of tumor sphere 
formation between different groups. For in-vivo analysis of CSCs, 
different dilutions of cells were injected into nude mice and the rates 
of tumor formation were calculated and all the data were analysed 
using Extreme Limiting Dilution Analysis (ELDA). By using this 
methods, many CSC markers have been identified [35].

Signaling Mediated Cancer Stemness in NSCLC
WNT signaling mediated cancer stemness in NSCLC

The properties of stemness in cancer cells require several 

molecular cascades including signaling of Notch, Hedgehog and 
WNT pathways [36]. Among these pathways, aberrant activation 
of WNT pathway has been found to be the most frequent event 
associated with higher rates of tumor recurrence and poor prognosis 
[37]. The carnonical WNT pathway is activated when the ligand 
WNT3a binds to its cell receptor Frizzled and LRP5/6 complex which 
can be inhibited by DKK1. Then the destruction of APC complex 
consisting of APC, GSK3, and AXIN members lead to the failure 
of degradation of ß -catenin by ß -Tcrp and the subsequent nuclear 
entry of ß-catenin, and finally lead to the transcription activation of 
TCF4 targets including CCND1, survivin, c-Myc, et al. [38].

  It has been reported that the activation of WNT pathway 
is highly associated with the tumor reccurence and poor patient 
survival in NSCLC cases. However, the occurrence of the APC 
mutation event remains poor in NSCLC although this APC mutation 
event has been widely reported in colon cancer which was positively 
associated with the CSC-mediated tumor reccurence and chemical 
resistance. In NSCLC, the epigenetic episodes could be a contributing 
factor to the activation of WNT pathway according to TCGA data 
base [39]. Besides, regulation by microRNAs such as mir29, mir582 
has been reported to be associated with the aberrant change of WNT 
signaling in NSCLC, and the activation of WNT pathway by aberrant 
expression of mir582 was required for their CSC property in NSCLC 
[40-41].

Notch signaling mediated cancer stemness in NSCLC

Beside WNT pathway, the activation of  Notch signaling is another 
course for the maintence of cancer stemness in solid tumors [42]. The 
synthesized Notch adaptors form a heterodimer when exported to 
the cell surface, and bind with the DSLdomains of the receptors of 
different cells, leading to a subsequent cascade of proteolytic cleavages 
and the transcription activation of downstream targets [43].

  It is worth noting that the level of Notch3 is up regulated in 
NSCLC patients after chemotherapy which is positively correlated 
with the level of CD44 and ALDH1A1. Furthermore, the expression 
of Notch3 is highly associated with poor patient survival and blocking 
Notch3 inhibited the properties of CSC in NSCLC in an autophagy 
dependent manner [44].

Hedgehog Signaling Mediated Cancer Stemness in NSCLC

As a classical signal transduction pathway in embryonic 
development, the hedgehog signaling also play a vital role in 
tumorgenesis via regulating cell growth and proliferation [45]. The 
carnonical Hedgehog signaling has two receptors including Patched 
(Ptc) and Smoothened (Smo), In the presence of Hedgehog, Pct 
failed to inhibit the activation of Smo, leading to the nucleus entry 
of the transcription factor Gli and the transcription activation of 
downstream targets [46]. 

As demonstrated by many pubulished data, a large group of genes 
involved in cell proliferarion and cell diffusion including c-Myc, 
EGF, IGF, PDGF, FGF, Cyclin D, Cyclin E, Cyclin B, BMP have been 
proved to be the downstream targets of Hedgehog pathway [47]. It 
has been reported that activation of Hedgehog pathway lead to the 
elevated expression of snail and ABCG2 and the occurrence of EMT 
in NSCLC, and the inhibition of the Hedgehog singalling increases 
cell sensitivities towards cisplatin and erlotinib in NSCLC. A subset 
of microRNAs responds to the process of Hedgehog inhibition, 
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including upregulated micro200b and Let-7c with the decreased level 
of CSC markers including Sox2, Nanog and EpCAM [48]. In addition, 
there is a crosstalk between Hedgehog signaling and other signaling 
including AKT, WNT or Notch signaling in dynamic regulation of 
tumorgenesis [49].

Other molecues involved in cancer stemness in NSCLC

Beside the contribution of WNT, Notch and Hedgehog pathways 
to cancer stemness in NSCLC, there are also several other molecues 
which play crucial roles in regulating cancer stemness in NSCLC. As a 
free radical gaseous molecule, Nitric Oxide (NO) could regulate diverse 
biological, physiological, and pathological processes among which it 
can induce the CSC phenotype in NSCLC [50]. As a member of the 
POU-domain family of transcription factors, Oct4 plays a crucial role 
in the maintaining the CSC phenotype in CD133-positive cells and 
confer resistance towards radiation, cisplatin or gefitinib in NSCLC 
[51-52]. As the main component of the caveolae plasma membranes 
found in most cell types, caveolin-1 is required for the AKT and ERK 
signaling activation after chemotherapy using ciprofloxasin and for 
the maintainence of the CSC phenotype [53]. Rac-1 targeting using 
small interfering RNA results in the suppression of cancer stemness 
in NSCLC [54]. In addition, activation of Interleukin-6 signaling is 
required for the formation of CSCs in NSCLC after therapy [55-56].  

Conclusion
Nowadays NSCLC still remains one of the most aggressive 

malignant tumor diseases which pose threat to people’s lives. People 
with NSCLC especially at higher histologic grades have a relative 
poorer prognosis due to very high rates of cancer reccurence after 
therapy. The CSCs theory is currently a very important field in cancer 
research and well supported in NSCLC since CSCs are associated 
with tumor metastasis, reccurence and resistance towards therapy. 
Traditional chemotherapy or other therapies failed to cure patients 
with NSCLC due to the existence of CSC. Thus, it’s necessary to 
establish CSC identification methods and explore the signaling 
involved in cancer stemness in NSCLC. In conclusion, This review 
provides diverse signaling involved in cancer stemess mainly including 
WNT pathway, Notch pathway and Hedgehog pathway. This review 
also describes classical identification methods of CSC including side-
popoluation, using CSC markers, and carnonical stemness evaluation 
methods. All of these illustrations will help design new drugs target 
CSC and promote the development of NSCLC treatment.
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