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Introduction
Viruses that selectively infect fungi are named mycoviruses. Mycoviruses, which were discovered 

late, haven’t got the same attention as plant and animal viruses probably because most mycoviruses 
cause symptomless infections. The first report on mycovirus was published in 1962 [1] but to 
date, they have been isolated from all major taxonomic groups of fungi. Mycoviruses are mainly 
discovered by nucleic acids isolation and sequencing and characterized by comparisons between 
mycovirus-infected and free fungal strains. The origins of mycoviruses remain uncertain and some 
hypotheses are proposed. Our knowledge of mycoviruses is slowly but steadily accumulating.

Mycoviruses have various genome types, including double-strand RNA (dsRNA), single strand 
RNA (ssRNA), single strand DNA (ssDNA). In the 7th International Committee for Taxonomy 
of Viruses (ICTV) report, only two ssRNA mycoviruses were reported. By far over a third of 
identified mycoviruses are characterized by ssRNA genome type. Many previously characterized 
dsRNA mycoviruses are supposed to be ssRNA mycoviruses at present. Generally, it’s accepted that 
dsRNA extracted from hypha is the replicative intermediate or replicative form of an ssRNA virus. 
According to the 9th report of the ICTV on virus taxonomy lists, mycoviruses are currently classified 
into seven dsRNA families, six ssRNA families and circular ssDNA (unclassified). Mycoviruses are 
being discovered at an increasing rate but many of them still remain unclassified.

Isometric particles are observed for most mycoviruses that encode coat proteins. However, 
many mycoviruses are naked viruses with an absence of particle morphologies. Since RNA 
mycoviruses don’t have an extracellular route of infection, the efficiency of their transmission 
was limited by vegetative incompatibility. Although many efforts are put on the screening and 
sequencing of novel mycoviruses, increasing researchers have begun to attempt to illuminate the 
interactions between mycoviruses and fungi in recent years. In this paper, we emphatically review 
the interactions between mycoviruses and host fungi. Some potential competing mechanism in the 
co-existence of fungi and viruses has been illustrated. Currently, most mycovirus research papers 
are concerned with cultivated mushrooms, yeasts and plant pathogenic fungi that are economically 
important. To our knowledge, some hypo virulent mycoviruses have been used as a tool to combat 
plant pathogenic fungal diseases. Even there are still some limitations; mycovirus therapy definitely, 
represents a promising direction for biological control of fungal diseases. 

Mycoviruses Evolution
The origins of mycovirus have always been different, since there is no single argument. 

Virologists have advanced two hypotheses to deduce origins of mycoviruses. The first hypothesis 
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Abstract

Fungal viruses (mycoviruses) exist in all major groups of fungi. The primary focus of this review is viruses of 
filamentous fungi, especially plant pathogens, with emphasis on the molecular characterization of fungus-virus 
interactions. There are two main hypotheses about the origin of mycoviruses isolated from plant pathogenic 
fungi. The origin of these mycoviruses may be ancient but they may also have evolved from plant viruses. Many 
characterized mycoviruses are in unencapsidated dsRNA forms without any coat protein in fungi. Mycoviruses 
are efficiently spread in two ways, vertically by spore formation and horizontally via hyphal fusion. Replication 
cycle of RNA mycoviruses doesn’t have the extracellular route of infection under natural conditions. Typically, 
fungal infections cause no obvious phenotypic alterations. Although the interaction of mycoviruses and their 
host is largely limited, those aspects including the transcriptional profiling and RNA silencing are of help to 
understand the co-existence mechanism of virus and fungi. Mycoviruses are potential agents of biological control 
of important plant pathogenic fungi.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Citation: Wang S, Ongena M, Qiu D and Guo L. Fungal Viruses: Promising Fundamental 
Research and Biological Control Agents of Fungi. SM Virol. 2017; 2(1): 1011.

Page 2/5

Gr   upSM Copyright  Guo L

is that mycoviruses are of ancient origin and coevolved together 
with their fungal hosts. This hypothesis is based on the proposal 
that RNA mycoviruses don’t have any extracellular transmission 
routes. Individual mycoviruses are generally limited to a single host 
species and it’s difficult to transmit mycoviruses among different 
fungal species. Mycoviruses and their hosts have developed a co-
evolutionary relationship over a long period. Another evidence 
is that some mitochondrial mycoviruses have been proved to use 
host mitochondrial genetic translation codes in Chalara elegans [2]. 
In these cases, such as the killer systems in yeast, mycoviruses are 
beneficial to the host, acting as extra-chromosomal [3]. As we know 
that most characterized mycoviruses cause symptomless phenotype, 
which may be the results of a long period of natural selection. 
Consequently, the vast majority of mycoviruses are at least not 
harmful and possibly beneficial for their fungal hosts.

The second hypothesis is that mycoviruses originate from plant 
viruses. This hypothesis is based on the sequence comparisons 
between mycoviruses and plant viruses. Several recently described 
mycoviruses are phylogenetically related to plant viruses [4-6]. Based 
on the sequence alignment and genetic analysis, these mycoviruses 
are clustered into the families that predominantly contain plant 
viruses. Some identified hypoviruses are phylogenetically related 
to potyviruses. These close phylogenetic relationships raise the 
possibility that at least some mycoviruses may have originated from 
plant viruses. It’s possible that the viruses move into fungi in the 
process that the fungus infects the virus-carrying plant. Although 
the incidence of internalization may be rare, the possibility could not 
be overlooked. However, it’s also possible that part of plant viruses 
derived from fungal viruses. By using the new sequencing technology, 
an increasing number of mycovirus genome sequences are being 
published, which will help our understanding of mycovirus evolution 
based on phylogenetic relationships.

Transmission of Mycoviruses
Normally, the incidence of mycoviruses in filamentous fungi 

is determined by the presence of dsRNAs. It’s reported that the 
incidence of mycovirus in different fungi species varies from a few 
percent to 100% [7-9]. Usually, a specific mycovirus is found for a 
particular fungal species, which is different from plant or animal 
viruses. However, there are exceptions like Cryphonectria hypovirus 
1 (CHV1) which has been identified in several Cryphonectria species. 
In different species of ascomycetes and basidiomycetes, similar 
viruses are detected [10,11].

Mainly, Mycoviruses spread by hyphal fusion or sporulation. 
And, extracellular routes were not observed for RNA mycoviruses in 
their natural life cycle. There are two major intracellular transmission 
ways: vertical and horizontal transmission. Vertical transmissions 
through asexual and sexual spore formation are primary means of 
mycovirus spread. Normally, most mycoviruses are highly efficiently 
transmitted to asexual sporulation. The transmission rate nearly 
reaches 100% via asexual spores in some cases [12]. Transmission rate 
through sexual spore types varies greatly and is usually lower than that 
of asexual transmission. In many cases, mycovirus particles or naked 
genomes are found in the cytoplasm. In the process of cytoplasmic 
exchange of fungal cells, mycoviruses spread into uninfected mycelial 
cells. According to this theory, mycoviruses are transmitted during 
cell fusion, division and mating with vegetative compatible strains.

The vegetative incompatibility is the main barrier to mycovirus 
horizontal transmission. When hyphae of two incompatible fungal 
strains fuse, they recognize each other as non self causing the fusion 
cells death, a type of Programmed Cell Death (PCD). The cytoplasmic 
exchange fails, resulting in impossible mycovirus horizontal 
transmission. By using molecular techniques such as transformation 
with cDNA infectious clone or RNA transcripts and protoplast fusion 
in special experimental settings, researchers have transfected various 
mycoviruses into different incompatible fungal strains. However, in 
some cases, mycoviruses can transmit to genetically incompatible 
fungal species under natural conditions. The rejection of heterokaryon 
is formed mildly with the presence of mycoviruses. It’s was believed 
that some mycoviruses may counteract PCD via suppression of genes 
involved in PCD activation.

Symptoms of Mycoviruses
Typically, mycoviruses cause cryptic or latent (symptomless) 

infections. Some mycoviruses can cause negative effects, including 
altered colony morphologies, reduced sporulation and growth rate 
and attenuation of virulence in their host. Mycoviruses that can 
attenuate the pathogenicity of fungi cause a great deal of interest 
for their potentiality of biological control. In particular, some 
kinds of yeasts, including Saccharomyces, Hanseniaspora and 
Zygosaccharomyces, and Ustilago maydis, can encode lethal toxin 
[13]. These toxin-secreting “killer yeasts” can kill the sensitive yeasts 
strains around, and thus get more nourishment. Killer toxin-encoding 
mycovirus have also been isolated from a filamentous fungus that 
exhibits cytotoxic to mycovirus-free strains [14]. Perhaps more 
interesting, some special mycoviruses are beneficial to their hosts 
[15]. It has been reported that a mycovirus in the endophytic fungus 
Curvularia protuberata has beneficial effects on the host plant, panic 
grass Dichanthelium lanuginosum by improving the plant’s ability 
to withstand high temperature [16]. It’s also worth to note that two 
CHV1 hypovirus isolates, CHV1-EP713 and CHV1-Euro7, which 
share high sequence identities, have distinct symptom profiles.

Mycoviruses Fungi Interactions
The study of interactions between mycoviruses and fungal host 

started late relative to plant or animal virus-host system. However, 
there are some advantages using the virus-fungi model to explore 
virus-host interactions more broadly. The fungal genetics are much 
simpler, especially when compared with those of Arabidopsis thaliana 
or Nicotiana benthamiana. Although the genetic manipulation is not 
well developed in fungi, advances in the technology come quickly. 
Another advantage is, most obviously, that fungi have much shorter 
culture cycle than plants or animals.

Transcriptome profiling is an alternative method to reveal 
the potential genes or pathways that are responsible for symptoms 
induction and gene alterations under virus infection. There is a fair 
amount of research on C. parasitica-mycovirus model about fungi-
virus interactions. With the mRNA differential display technology, 
transcriptome changes between CHV1 infected and virus-free C. 
parasitica strains were compared [17]. A cDNA microarray of C. 
parasitica has been used to explore the changes induced by hypovirus 
infection at the transcriptional level [18]. A series of C. parasitica 
genes were regulated, including carbon metabolism, transcriptional 
regulation and stress responses. Gene expression comparisons 
between C. parasitica strains infected with CHV1-EP713 and CHV1-
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Euro7 were also performed. The expression differences were especially 
striking though CHV1-Euro7 shares a high level of nucleotide and 
amino acid identities with CHV1-EP713. 

Beyond the C. parasitica mycovirus model, a number of 
transcriptome profiling has been characterized in other fungi-
mycoviruses systems. In Sclerotinia sclerotiorum debilitation-
associated RNA virus (SsDRV)-infected S. sclerotiorum, 150 genes 
was expressed differentially compared to the SsDRV-free strain. These 
genes were related to protein synthesis and transport, stress response, 
and so on [19]. Protein and transcription expression levels were 
compared between FgV1-infected Fusarium graminearum and virus-
free strain. Genes involved in various pathways including protein 
synthesis and cAMP signaling were enriched [20,21]. By using the 
NGS technology, 12 differentially expressed genes were commonly 
identified in response to all four mycovirus infected F. graminearum 
[22]. Wang et al. found that cellular redox regulation was one of 
the main stress response in FgHV1 infected F. graminearum by 
transcriptome-based analysis. In addition, FgHV1 encoded p20 
could induce hypersensitive responses in vitro [12]. Besides, the 
transcriptome levels of G-protein and mitochondrial function 
disruption related genes were also changed in mycovirus infected 
fungi [23,24].

RNA silencing is an important pathway of the regulation 
system in eukaryotic cells. It is the main antiviral defense response 
in viruses infected organisms. However, the deeply-research fungal 
species is Neurospora crassa in the aspect of RNA silencing system. 
Unfortunately, no viral system is established in N. crassa for lack 
of available mycoviruses. It has been demonstrated that RNA 
silencing acts as an antiviral defense mechanism in fungi [25]. In C. 
parasitica-CHV1 model, 171 CHV1-derived siRNAs were detected 
and sequenced [26]. Two Dicer proteins, four argonaute proteins 
and four RdRp proteins have been confirmed in C. parasitica. It had 
been demonstrated that dcl-2 and agl-2 genes played critical roles 
in antiviral RNA silencing process. In some cases, RNA silencing 
could can have a positive or negative effect on the frequency of 
viral genome rearrangements [27,28]. By using NGS, 1,831,081 and 
3,254,758 FgHV1 and FgHV2-derived small RNAs were identified in 
F. graminearum, respectively indicating that viral RNA trigger RNA 
silencing in fungal host. Host miRNA expression profiles were is also 
changed by FgHV1 infection in F. graminearum [29]. 

Viruses use different strategies to escape host RNA silencing in 
plant and animal viruses [30]. One of interest is coding RNA silencing 
suppressors (RSSs). In plant viruses, many RSSs have been identified. 
These RSSs are diverse in sequences and structures and they display 
different host RNA silencing suppression mechanisms [31].So far 
only two RSSs were identified in mycoviruses group. CHV1 encode 
continuous two open reading frames, ORF A and ORF B. Poly peptide, 
p29 released from ORF A, was responsible for host RNA silencing 
suppression [32]. The second mycovirus suppressor was encoded by 
s10 gene of Rosellinia necatrix mycoreovirus 3 which was classified 
into Reoviridae family [33]. Our work on Agrobacterium transient 
expression assays in N. benthamiana suggests that p20, encoded 
by FgHV1, is also an RSS (S.C.W, L.H.G unpublished results). 
More interesting still, host core RNA silencing genes, FgDicer1 and 
FgRdRp5, were predicted to be targets of virus-derived sRNAs, which 
may be a novel anti-RNA silencing strategy employed by mycoviruses 
[29].

In recent years, F. graminearum-mycovirus has also been 
developed as a good model to explore fungi-virus interaction. The 
genome of the F. graminearum strain PH-1 was sequenced and 
published, which will provide the necessary genetic information for 
further study [34]. F. graminearum RNA silencing components, two 
dicer proteins, two argonaute proteins and five RNA-dependent RNA 
polymerases were characterized, among which FgDicer2 and FgAgo2 
played critical roles in gene silencing process [35]. Till now, more 
than 10 mycoviruses has been discovered in Fusarium species (Table 
1), providing sufficient resources for fungi-virus interaction study. 
Moreover, Lee et al. transfected four different mycoviruses into F. 
graminearum PH-1 strain making comparisons of these mycoviruses 
possible [22].

Promising Agents of Gene Vectors and Biological 
Control of Pathogenic Fungi

Nowadays, as many mycoviruses have little effect on their host 
fungi, they can be used as gene insertion vectors. Coat proteins of 
several plant viruses have been genetically modified to express human 
or animal’s antigenic epitopes for vaccine development. For example, 
flexivirus Potato virus X has been used as vectors to express different 
kinds of genes in plants [45]. It’s possible that the ssRNA mycoviruses 
belonging to the Flexiviridae family such as BVX, BCVF and SsDRV, 

Table 1: List of mycoviruses identified from Fusarium species.

Name Genome Taxonomy Symptoms in Fungal Host Ref

FgV1 dsRNA Suggested Fusariviridae Hypovirulence, colony morphology alterations, mycotoxins reduction and sexual and asexual 
development disorders [36]

FgV2 dsRNA Chrysoviridae Hypovirulence, colony morphology alterations, and sexual and asexual development disorders [37]

FgV3 dsRNA Totiviriridae or Chrysoviridae No effect [38]

FgV4 dsRNA Partitiviridae No effect [38]

FgV-ch9 dsRNA Chrysoviridae Hypovirulence, colony morphology alterations and asexual development disorders [39]

FgHV1 ssRNA Hypoviridae Growth rate and asexual spore production reduction [40]

FgHV2 ssRNA Hypoviridae Hypovirulence, colony morphology alterations, mycotoxins reduction and asexual development 
disorders [41]

FgMTV1 dsRNA Tymoviridae Colony morphology alterations, mycotoxins reduction [42]

FpV2 dsRNA Unassigned No characterization [43]

FpV3 dsRNA Unassigned No characterization [43]

FgDFV1 ssRNA Suggested Deltaflexiviridae No characterization [44]
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may be the candidates for gene insertion vectors. Likewise, one 
possible scenario is that engineering of genes involved in mycovirus 
can also lead to vaccine development.

Fungicides are relatively cheap, quick and effective at controlling 
some plant diseases. However, their applications are limited by 
many concerns including environmental pollution and resistance. 
Biological approaches are thus needed to assist in the control plant 
pathogens. It’s intellectual and ecological to use mycoviruses to 
control fungal diseases. Unfortunately, most mycoviruses cannot be 
directly used in the field. However, the mycovirus CHV1 has been 
successfully used to control chestnut blight pathogen C. parasitica in 
Europe [46]. And this successful biological control of C. parasitica 
has inspired more mycovirologists to find novel mycoviruses with 
huge application potentials.

Fungal vegetative incompatibility shown by many species is likely 
to be the major barrier. Normally, hyphal fusion is the main way for 
mycoviruses transmission among different host species. It’s hard for 
mycoviruses spread among natural host populations whose species 
are quite complicated. But the surprising and encouraging things 
are that purified S. sclerotiorum hypo-virulence-associated virus-1 
(SsHADV1) particles can be directly used to infect S. sclerotiorum, 
thus making application of SsHADV1 as a spray available [47]. 
Another example is that S. sclerotiorum partitivirus 1 (SsPV1) can 
overcome vegetative incompatibility and transmit between mycelial 
incompatible strains [48]. 

It has been demonstrated that sprayed long dsRNA can be 
absorbed into fungi cells and used as biological control agents 
[49,50]. As we know, many mycoviruses have dsRNA or dsRNA 
replicative intermediate. So these mycoviruses that reduce the 
pathogenicity of fungi may be used as agents for dsRNA application 
in the field. Moreover, nanoparticles have been developed as dsRNA 
carrier for protection against plant viruses [51]. Nanotechnology 
has considerable promise for mycoviruses application as biological 
control agents in the near future. 

Conclusions
Mycoviruses exist in all major groups of fungi. However, they 

have not caused enough attention. This review article summarized 
the development of mycoviruses from five aspects as discussed 
above, containing main contents for mycoviruses. Molecular 
characterization of fungus-virus interactions, which were discussed 
in detail, indicating mycoviruses are promising agents of fundamental 
research. We also put forward a new viewpoint on the application of 
mycoviruses: nanotechnology may be a revolutionary new tool for 
mycoviruses application in the field.
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